
LFSpy

May 07, 2020

Contents:

1 Statement of Need 3

2 Installation 5

3 Dependencies 7

4 Testing 9

5 Usage 11

6 Tunable Parameters 13

7 Authors 15

8 Acknowledgments 17
8.1 Introduction . 17
8.2 Installation . 18
8.3 Configuration . 18
8.4 Usage . 18
8.5 scikit-learn Compatability . 19
8.6 Testing . 19
8.7 Functionality . 19
8.8 Examples . 21
8.9 Contribution Guidelines . 22
8.10 Citations . 23

9 Indices and tables 25

i

ii

LFSpy

Localized feature selection (LFS) is a supervised machine learning approach for embedding localized feature selection
in classification. The sample space is partitioned into overlapping regions, and subsets of features are selected that are
optimal for classification within each local region. As the size and membership of the feature subsets can vary across
regions, LFS is able to adapt to local variation across the entire sample space.

This repository contains a python implementation of this method that is compatible with scikit-learn pipelines. For a
Matlab version, refer to https://github.com/armanfn/LFS

The LFS approach was developed by Nargus Armanfard. For further information please refer to:

• N. Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

• N. Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature
Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no.
5, pp. 1396-1413, 2018

Contents: 1

https://github.com/armanfn/LFS

LFSpy

2 Contents:

CHAPTER 1

Statement of Need

LFSpy offers an implementation of the Local Feature Selection (LFS) algorithm that is compatible with scikit-learn,
one of the most widely used machine learning packages today. LFS combines classification with feature selection, and
distinguishes itself by its flexibility in selecting a different subset of features for different data points based on what is
most discriminative in local regions of the feature space. This means LFS overcomes a well-known weakness of many
classification algorithms, i.e., classification for non-stationary data where the number of features is high relative to the
number of samples.

3

LFSpy

4 Chapter 1. Statement of Need

CHAPTER 2

Installation

LFSpy is available on the pypy distribution platform at https://pypi.org/project/LFSpy/.

To install LFSpy along with its dependacies run the command:

pip install lfspy

5

https://pypi.org/project/LFSpy/

LFSpy

6 Chapter 2. Installation

CHAPTER 3

Dependencies

LFS requires:

• Python 3

• NumPy>=1.14

• SciPy>=1.1

• Scikit-learn>=0.18.2

• pytest>=5.0.0

7

LFSpy

8 Chapter 3. Dependencies

CHAPTER 4

Testing

We recommend running the provided test after installing LFSpy to ensure the results obtained match expected outputs.

pytest may be installed either directly through pip (pip install pytest) or using the test extra (pip install
LFSpy[test]).

pytest --pyargs LFSpy

This will output to console whether or not the results of LFSpy on two datasets (the sample dataset provided in this
repository, and scikit-learn’s Fisher Iris dataset) are exactly as expected.

So far, LFSpy has been tested on Windows 10 with and without Conda, and on Ubuntu. In all cases, results have been
exactly the expected results.

9

LFSpy

10 Chapter 4. Testing

CHAPTER 5

Usage

To use LFSpy on its own:

from LFSpy import LocalFeatureSelection

lfs = LocalFeatureSelection()
lfs.fit(training_data, training_labels)
predicted_labels = lfs.predict(testing_data)
total_error, class_error = lfs.score(testing_data, testing_labels)

To use LFSpy as part of an sklearn pipeline:

from LFS import LocalFeatureSelection
from sklearn.pipeline import Pipeline

lfs = LocalFeatureSelection()
pipeline = Pipeline([('lfs', lfs)])
pipeline.fit(training_data, training_labels)
predicted_labels = pipeline.predict(testing_data)
total_error, class_error = pipeline.score(testing_data, testing_labels)

11

LFSpy

12 Chapter 5. Usage

CHAPTER 6

Tunable Parameters

• alpha: (default: 19) the maximum number of selected features for each representative point

• gamma: (default: 0.2) impurity level tolerance, controls proportion of out-of-class samples can be in local region

• tau: (default: 2) number of passes through the training set

• sigma: (default: 1) adjusts weightings for observations based on their distance, values greater than 1 result in
lower weighting

• n_beta: (default: 20) number of beta values to test, controls the relative weighting of intra-class vs. inter-class
distance in the objective function

• nrrp: (default: 2000) number of iterations for randomized rounding process

• knn: (default: 1) number of nearest neighbours to compare for classification

13

LFSpy

14 Chapter 6. Tunable Parameters

CHAPTER 7

Authors

• Oliver Cook

• Kiret Dhindsa

• Areeb Khawajaby

• Ron Harwood

• Thomas Mudway

15

LFSpy

16 Chapter 7. Authors

CHAPTER 8

Acknowledgments

• N. Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

• N. Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature
Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no.
5, pp. 1396-1413, 2018.

8.1 Introduction

Localized feature selection (LFS) is a supervised machine learning approach for embedding localized feature selection
in classification. The sample space is partitioned into overlapping regions, and subsets of features are selected that are
optimal for classification within each local region. As the size and membership of the feature subsets can vary across
regions, LFS is able to adapt to local variation across the entire sample space.

This repository contains a python implementation of this method that is compatible with scikit-learn pipelines. For a
Matlab version, refer to https://github.com/armanfn/LFS

The LFS approach was developed by Nargus Armanfard. For further information please refer to:

• N. Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

• N. Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature
Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no.
5, pp. 1396-1413, 2018

8.1.1 Statement of Need

LFSpy offers an implementation of the Local Feature Selection (LFS) algorithm that is compatible with scikit-learn,
one of the most widely used machine learning packages today. LFS combines classification with feature selection, and
distinguishes itself by its flexibility in selecting a different subset of features for different data points based on what is
most discriminative in local regions of the feature space. This means LFS overcomes a well-known weakness of many

17

https://github.com/armanfn/LFS

LFSpy

classification algorithms, i.e., classification for non-stationary data where the number of features is high relative to the
number of samples.

8.2 Installation

LFSpy is available on the Python Package Index (PyPI).

To install LFSpy along with its dependencies run the command:

pip install lfspy

8.2.1 Dependencies

LFS requires:

• Python 3

• NumPy>=1.14

• SciPy>=1.1

• Scikit-learn>=0.18.2

• pytest>=5.0.0

8.3 Configuration

The localized feature selection method has a set of user configurable paramaters that can be tweaked to get your desired
functionality. For a full description of each parameter refer to the papers listed in the citations section. The parameters
are:

• alpha: (default: 19) the maximum number of selected features for each representative point

• gamma: (default: 0.2) impurity level tolerance, controls proportion of out-of-class samples can be in local region

• tau: (default: 2) number of passes through the training set

• sigma: (default: 1) adjusts weightings for observations based on their distance, values greater than 1 result in
lower weighting

• n_beta: (default: 20) number of beta values to test, controls the relative weighting of intra-class vs. inter-class
distance in the objective function

• nrrp: (default: 2000) number of iterations for randomized rounding process

• knn: (default: 1) number of nearest neighbours to compare for classification

8.4 Usage

To use LFSpy on its own:

18 Chapter 8. Acknowledgments

https://pypi.org/project/LFSpy/

LFSpy

from LFSpy import LocalFeatureSelection

lfs = LocalFeatureSelection()
lfs.fit(training_data, training_labels)
predicted_labels = lfs.predict(testing_data)
total_error, class_error = lfs.score(testing_data, testing_labels)

8.5 scikit-learn Compatability

To use LFSpy as part of an sklearn pipeline:

from LFS import LocalFeatureSelection
from sklearn.pipeline import Pipeline

lfs = LocalFeatureSelection()
pipeline = Pipeline([('lfs', lfs)])
pipeline.fit(training_data, training_labels)
predicted_labels = pipeline.predict(testing_data)
total_error, class_error = pipeline.score(testing_data, testing_labels)

8.6 Testing

We recommend running the provided test after installing LFSpy to ensure the results obtained match expected outputs.

pytest may be installed either directly through pip (pip install pytest) or using the test extra (pip install LFSpy[test]).

pytest --pyargs LFSpy

This will output to console whether or not the results of LFSpy on two datasets (the sample dataset provided in this
repository, and scikit-learn’s Fisher Iris dataset) are exactly as expected.

So far, LFSpy has been tested on Windows 10 with and without Conda, and on Ubuntu. In all cases, results have been
exactly the expected results.

8.7 Functionality

class LocalFeatureSelection(self, alpha=19, gamma=0.2, tau=2, sigma=1, n_beta=20,
→˓nrrp=2000, knn=1, rr_seed=None)

8.5. scikit-learn Compatability 19

LFSpy

Parameters
alpha : integer, optional, default 19 maximum num-

ber of selected features for each representative
sample

gamma : integer, optional, default 0.2 impurity level
tau : integer, optional, default 2 number of iterations
sigma : integer, optional, default 1 controls neigh-

boring samples weighting
n_beta : integer, optional, default 20 number of dis-

tinct beta
nrrp : integer, optional, default 2000 number of iter-

ations for randomized wandering process
knn : integer, optional, default 1 k nearest neigh-

bours
rr_seed : integer, optional, default None seed value

for random wandering process

Attributes
fstar : array of shape (n_features, n_features)

selected features for each sample
fstar_lin : array of shape (n_features, n_features)

fstar before applying randomized wandering
process

training_data : array of shape (n_features, n_samples
The set of M by N features and observations the
model was trained on

training_labels : array of shape (n_samples) The set
of N class labels the model was trained on

8.7.1 Methods

fit(self, training_data, training_labels)
predict(self, testing_data)
classification(self, testing_data)
class_sim_m(self, test, N, patterns, targets, fstar)

__init__(self, alpha=19, gamma=0.2, tau=2, sigma=1, n_beta=20, nrrp=2000, knn=1, rr_
→˓seed=None)

Initialize self

fit(self, training_data, training_labels)

Fit model

20 Chapter 8. Acknowledgments

LFSpy

Parameters
training_data [{array-like} of shape (n_samples,

m_features)] Training data
training_labels [{array-like} of shape (n_samples)]

Class labels for each sample

Returns

predict(self, testing_data)

Predict using the model

Parameters
testing_data [{array-like} of shape (n_samples,

m_features)] Testing data

Returns

classification(self, testing_data)

Internal feature classification function, called by predict function

Parameters
testing_data [{array-like} of shape (n_samples,

m_features)] Testing data

Returns

class_sim_m(self, test, N, patterns, targets, fstar, gamma, knn)

Internal feature classification function, called by classification function

Parameters
test [{array-like} of shape (n_samples, m_features)]

Testing data
N: {integer} Number of features
patterns: Data the model was trained on
targets: Class Labels the model was trained on
fstar: Selected features for each samples
gamma: Impurity Level
knn: K nearest neighbours

Returns

8.8 Examples

Given here is an example demonstration of localized feature selection and LFSpy for feature selection and classification
using the common Iris flower data set.

For installation instructions please refer to the “Installation” section.

8.8. Examples 21

LFSpy

import numpy as np
from scipy.io import loadmat
from LFSpy import LocalFeatureSelection
from sklearn.pipeline import Pipeline

Loads the sample dataset
mat = loadmat('LFSpy/tests/matlab_Data')
x_train = mat['Train'].T
y_train = mat['TrainLables'][0]
x_test = mat['Test'].T
y_test = mat['TestLables'][0]

#Trains an tests and LFS model using default parameters on the given dataset.
print('Training and testing an LFS model with default parameters.\nThis may take a
→˓few minutes...')
lfs = LocalFeatureSelection(rr_seed=777)
pipeline = Pipeline([('classifier', lfs)])
pipeline.fit(x_train, y_train)
y_pred = pipeline.predict(x_test)
score = pipeline.score(x_test, y_test)
print('LFS test accuracy: {}'.format(score))
On our test system, running this code prints the following: LFS test accuracy: 0.
→˓7962962962962963

8.9 Contribution Guidelines

Contributions are welcomed and can be made to the public Git repository available at: https://github.com/
McMasterRS/LFSpy

We encourage anyone looking to contribute to consult the open issues available at https://github.com/McMasterRS/
LFSpy/issues

We ask that in submitting changes you consult the coding standards and pull request guidelines outlined below.

8.9.1 Contributing to the method:

This library impliments the Localized Feature Selection method outlined by Nargus Armenford. As such, changes
made the method should be only done to reflect changes made to the theoretical basis.

8.9.2 Submitting a Pull Request

Please submit one pull request per feature. Before submitting a pull request ensure your code continues to pass the
included tests. LFSpy uses pytest and the tests are located in the tests directory of this repository.

The tests can be run using the command:

pytest --pyargs LFSpy

22 Chapter 8. Acknowledgments

https://github.com/McMasterRS/LFSpy
https://github.com/McMasterRS/LFSpy
https://github.com/McMasterRS/LFSpy/issues
https://github.com/McMasterRS/LFSpy/issues

LFSpy

8.10 Citations

1. N. Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

2. N. Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature
Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no.
5, pp. 1396-1413, 2018.

8.10. Citations 23

LFSpy

24 Chapter 8. Acknowledgments

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

25

	Statement of Need
	Installation
	Dependencies
	Testing
	Usage
	Tunable Parameters
	Authors
	Acknowledgments
	Introduction
	Installation
	Configuration
	Usage
	scikit-learn Compatability
	Testing
	Functionality
	Examples
	Contribution Guidelines
	Citations

	Indices and tables

