

LFSpy

Localized feature selection (LFS) is a supervised machine learning approach for embedding localized feature selection in classification. The sample space is partitioned into overlapping regions, and subsets of features are selected that are optimal for classification within each local region. As the size and membership of the feature subsets can vary across regions, LFS is able to adapt to local variation across the entire sample space.

This repository contains a python implementation of this method that is compatible with scikit-learn pipelines. For a Matlab version, refer to https://github.com/armanfn/LFS

The LFS approach was developed by Nargus Armanfard. For further information please refer to:

	
	Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

	
	Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1396-1413, 2018

Statement of Need

LFSpy offers an implementation of the Local Feature Selection (LFS) algorithm that is compatible with scikit-learn, one of the most widely used machine learning packages today. LFS combines classification with feature selection, and distinguishes itself by its flexibility in selecting a different subset of features for different data points based on what is most discriminative in local regions of the feature space. This means LFS overcomes a well-known weakness of many classification algorithms, i.e., classification for non-stationary data where the number of features is high relative to the number of samples.

Installation

LFSpy is available on the pypy distribution platform at https://pypi.org/project/LFSpy/.

To install LFSpy along with its dependacies run the command:

pip install lfspy

Dependencies

LFS requires:

	Python 3

	NumPy>=1.14

	SciPy>=1.1

	Scikit-learn>=0.18.2

	pytest>=5.0.0

Testing

We recommend running the provided test after installing LFSpy to ensure the results obtained match expected outputs.

pytest may be installed either directly through pip (pip install pytest) or using the test extra (pip install LFSpy[test]).

pytest --pyargs LFSpy

This will output to console whether or not the results of LFSpy on two datasets (the sample dataset provided in this repository, and scikit-learn’s Fisher Iris dataset) are exactly as expected.

So far, LFSpy has been tested on Windows 10 with and without Conda, and on Ubuntu. In all cases, results have been exactly the expected results.

Usage

To use LFSpy on its own:

from LFSpy import LocalFeatureSelection

lfs = LocalFeatureSelection()
lfs.fit(training_data, training_labels)
predicted_labels = lfs.predict(testing_data)
total_error, class_error = lfs.score(testing_data, testing_labels)

To use LFSpy as part of an sklearn pipeline:

from LFS import LocalFeatureSelection
from sklearn.pipeline import Pipeline

lfs = LocalFeatureSelection()
pipeline = Pipeline([('lfs', lfs)])
pipeline.fit(training_data, training_labels)
predicted_labels = pipeline.predict(testing_data)
total_error, class_error = pipeline.score(testing_data, testing_labels)

Tunable Parameters

	alpha: (default: 19) the maximum number of selected features for each representative point

	gamma: (default: 0.2) impurity level tolerance, controls proportion of out-of-class samples can be in local region

	tau: (default: 2) number of passes through the training set

	sigma: (default: 1) adjusts weightings for observations based on their distance, values greater than 1 result in lower weighting

	n_beta: (default: 20) number of beta values to test, controls the relative weighting of intra-class vs. inter-class distance in the objective function

	nrrp: (default: 2000) number of iterations for randomized rounding process

	knn: (default: 1) number of nearest neighbours to compare for classification

Authors

	Oliver Cook

	Kiret Dhindsa

	Areeb Khawajaby

	Ron Harwood

	Thomas Mudway

Acknowledgments

	
	Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

	
	Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1396-1413, 2018.

Contents:

	Introduction
	Statement of Need

	Installation
	Dependencies

	Configuration

	Usage

	scikit-learn Compatability

	Testing

	Functionality
	Methods

	Examples

	Contribution Guidelines
	Contributing to the method:

	Submitting a Pull Request

	Citations

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Localized feature selection (LFS) is a supervised machine learning approach for embedding localized feature selection in classification. The sample space is partitioned into overlapping regions, and subsets of features are selected that are optimal for classification within each local region. As the size and membership of the feature subsets can vary across regions, LFS is able to adapt to local variation across the entire sample space.

This repository contains a python implementation of this method that is compatible with scikit-learn pipelines. For a Matlab version, refer to https://github.com/armanfn/LFS

The LFS approach was developed by Nargus Armanfard. For further information please refer to:

	
	Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

	
	Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1396-1413, 2018

Statement of Need

LFSpy offers an implementation of the Local Feature Selection (LFS) algorithm that is compatible with scikit-learn, one of the most widely used machine learning packages today. LFS combines classification with feature selection, and distinguishes itself by its flexibility in selecting a different subset of features for different data points based on what is most discriminative in local regions of the feature space. This means LFS overcomes a well-known weakness of many classification algorithms, i.e., classification for non-stationary data where the number of features is high relative to the number of samples.

Installation

LFSpy is available on the Python Package Index (PyPI) [https://pypi.org/project/LFSpy/].

To install LFSpy along with its dependencies run the command:

pip install lfspy

Dependencies

LFS requires:

	Python 3

	NumPy>=1.14

	SciPy>=1.1

	Scikit-learn>=0.18.2

	pytest>=5.0.0

Configuration

The localized feature selection method has a set of user configurable paramaters that can be tweaked to get your desired functionality. For a full description of each parameter refer to the papers listed in the citations section. The parameters are:

	alpha: (default: 19) the maximum number of selected features for each representative point

	gamma: (default: 0.2) impurity level tolerance, controls proportion of out-of-class samples can be in local region

	tau: (default: 2) number of passes through the training set

	sigma: (default: 1) adjusts weightings for observations based on their distance, values greater than 1 result in lower weighting

	n_beta: (default: 20) number of beta values to test, controls the relative weighting of intra-class vs. inter-class distance in the objective function

	nrrp: (default: 2000) number of iterations for randomized rounding process

	knn: (default: 1) number of nearest neighbours to compare for classification

Usage

To use LFSpy on its own:

from LFSpy import LocalFeatureSelection

lfs = LocalFeatureSelection()
lfs.fit(training_data, training_labels)
predicted_labels = lfs.predict(testing_data)
total_error, class_error = lfs.score(testing_data, testing_labels)

scikit-learn Compatability

To use LFSpy as part of an sklearn pipeline:

from LFS import LocalFeatureSelection
from sklearn.pipeline import Pipeline

lfs = LocalFeatureSelection()
pipeline = Pipeline([('lfs', lfs)])
pipeline.fit(training_data, training_labels)
predicted_labels = pipeline.predict(testing_data)
total_error, class_error = pipeline.score(testing_data, testing_labels)

Testing

We recommend running the provided test after installing LFSpy to ensure the results obtained match expected outputs.

pytest may be installed either directly through pip (pip install pytest) or using the test extra (pip install LFSpy[test]).

pytest --pyargs LFSpy

This will output to console whether or not the results of LFSpy on two datasets (the sample dataset provided in this repository, and scikit-learn’s Fisher Iris dataset) are exactly as expected.

So far, LFSpy has been tested on Windows 10 with and without Conda, and on Ubuntu. In all cases, results have been exactly the expected results.

Functionality

class LocalFeatureSelection(self, alpha=19, gamma=0.2, tau=2, sigma=1, n_beta=20, nrrp=2000, knn=1, rr_seed=None)

	Parameters

	
	alpha : integer, optional, default 19

	maximum number of selected features for each representative sample

	gamma : integer, optional, default 0.2

	impurity level

	tau : integer, optional, default 2

	number of iterations

	sigma : integer, optional, default 1

	controls neighboring samples weighting

	n_beta : integer, optional, default 20

	number of distinct beta

	nrrp : integer, optional, default 2000

	number of iterations for randomized wandering process

	knn : integer, optional, default 1

	k nearest neighbours

	rr_seed : integer, optional, default None

	seed value for random wandering process

	Attributes

	
	fstar : array of shape (n_features, n_features)

	selected features for each sample

	fstar_lin : array of shape (n_features, n_features)

	fstar before applying randomized wandering process

	training_data : array of shape (n_features, n_samples

	The set of M by N features and observations the model was trained on

	training_labels : array of shape (n_samples)

	The set of N class labels the model was trained on

Methods

	fit(self, training_data, training_labels)

	

	predict(self, testing_data)

	

	classification(self, testing_data)

	

	class_sim_m(self, test, N, patterns, targets, fstar)

	

__init__(self, alpha=19, gamma=0.2, tau=2, sigma=1, n_beta=20, nrrp=2000, knn=1, rr_seed=None)

Initialize self

fit(self, training_data, training_labels)

Fit model

	Parameters

	
	training_data{array-like} of shape (n_samples, m_features)

	Training data

	training_labels{array-like} of shape (n_samples)

	Class labels for each sample

	Returns

	

predict(self, testing_data)

Predict using the model

	Parameters

	
	testing_data{array-like} of shape (n_samples, m_features)

	Testing data

	Returns

	

classification(self, testing_data)

Internal feature classification function, called by predict function

	Parameters

	
	testing_data{array-like} of shape (n_samples, m_features)

	Testing data

	Returns

	

class_sim_m(self, test, N, patterns, targets, fstar, gamma, knn)

Internal feature classification function, called by classification function

	Parameters

	
	test{array-like} of shape (n_samples, m_features)

	Testing data

	N: {integer}

	Number of features

	patterns:

	Data the model was trained on

	targets:

	Class Labels the model was trained on

	fstar:

	Selected features for each samples

	gamma:

	Impurity Level

	knn:

	K nearest neighbours

	Returns

	

Examples

Given here is an example demonstration of localized feature selection and LFSpy for feature selection and classification using the common Iris flower data set.

For installation instructions please refer to the “Installation” section.

import numpy as np
from scipy.io import loadmat
from LFSpy import LocalFeatureSelection
from sklearn.pipeline import Pipeline

Loads the sample dataset
mat = loadmat('LFSpy/tests/matlab_Data')
x_train = mat['Train'].T
y_train = mat['TrainLables'][0]
x_test = mat['Test'].T
y_test = mat['TestLables'][0]

#Trains an tests and LFS model using default parameters on the given dataset.
print('Training and testing an LFS model with default parameters.\nThis may take a few minutes...')
lfs = LocalFeatureSelection(rr_seed=777)
pipeline = Pipeline([('classifier', lfs)])
pipeline.fit(x_train, y_train)
y_pred = pipeline.predict(x_test)
score = pipeline.score(x_test, y_test)
print('LFS test accuracy: {}'.format(score))
On our test system, running this code prints the following: LFS test accuracy: 0.7962962962962963

Contribution Guidelines

Contributions are welcomed and can be made to the public Git repository available at: https://github.com/McMasterRS/LFSpy

We encourage anyone looking to contribute to consult the open issues available at https://github.com/McMasterRS/LFSpy/issues

We ask that in submitting changes you consult the coding standards and pull request guidelines outlined below.

Contributing to the method:

This library impliments the Localized Feature Selection method outlined by Nargus Armenford. As such, changes made the method should be only done to reflect changes made to the theoretical basis.

Submitting a Pull Request

Please submit one pull request per feature. Before submitting a pull request ensure your code continues to pass the included tests. LFSpy uses pytest and the tests are located in the tests directory of this repository.

The tests can be run using the command:

pytest --pyargs LFSpy

Citations

	
	Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.

	
	Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1396-1413, 2018.

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 LFSpy

 		
 Introduction

 		
 Statement of Need

 		
 Installation

 		
 Dependencies

 		
 Configuration

 		
 Usage

 		
 scikit-learn Compatability

 		
 Testing

 		
 Functionality

 		
 Methods

 		
 Examples

 		
 Contribution Guidelines

 		
 Contributing to the method:

 		
 Submitting a Pull Request

 		
 Citations

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

