

    
      
          
            
  
LFSpy

Localized feature selection (LFS) is a supervised machine learning approach for embedding localized feature selection in classification. The sample space is partitioned into overlapping regions, and subsets of features are selected that are optimal for classification within each local region. As the size and membership of the feature subsets can vary across regions, LFS is able to adapt to local variation across the entire sample space.

This repository contains a python implementation of this method that is compatible with scikit-learn pipelines. For a Matlab version, refer to https://github.com/armanfn/LFS

The LFS approach was developed by Nargus Armanfard. For further information please refer to:


	
	Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.






	
	Armanfard, JP. Reilly, and M. Komeili, “Logistic Localized Modeling of the Sample Space for Feature Selection and Classification”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 5, pp. 1396-1413, 2018









Statement of Need

LFSpy offers an implementation of the Local Feature Selection (LFS) algorithm that is compatible with scikit-learn, one of the most widely used machine learning packages today. LFS combines classification with feature selection, and distinguishes itself by its flexibility in selecting a different subset of features for different data points based on what is most discriminative in local regions of the feature space. This means LFS overcomes a well-known weakness of many classification algorithms, i.e., classification for non-stationary data where the number of features is high relative to the number of samples.




Installation

LFSpy is available on the pypy distribution platform at https://pypi.org/project/LFSpy/.

To install LFSpy along with its dependacies run the command:

pip install lfspy








Dependencies

LFS requires:


	Python 3


	NumPy>=1.14


	SciPy>=1.1


	Scikit-learn>=0.18.2


	pytest>=5.0.0







Testing

We recommend running the provided test after installing LFSpy to ensure the results obtained match expected outputs.

pytest may be installed either directly through pip (pip install pytest) or using the test extra (pip install LFSpy[test]).

pytest --pyargs LFSpy





This will output to console whether or not the results of LFSpy on two datasets (the sample dataset provided in this repository, and scikit-learn’s Fisher Iris dataset) are exactly as expected.

So far, LFSpy has been tested on Windows 10 with and without Conda, and on Ubuntu. In all cases, results have been exactly the expected results.




Usage

To use LFSpy on its own:

from LFSpy import LocalFeatureSelection

lfs = LocalFeatureSelection()
lfs.fit(training_data, training_labels)
predicted_labels = lfs.predict(testing_data)
total_error, class_error = lfs.score(testing_data, testing_labels)





To use LFSpy as part of an sklearn pipeline:

from LFS import LocalFeatureSelection
from sklearn.pipeline import Pipeline

lfs = LocalFeatureSelection()
pipeline = Pipeline([('lfs', lfs)])
pipeline.fit(training_data, training_labels)
predicted_labels = pipeline.predict(testing_data)
total_error, class_error = pipeline.score(testing_data, testing_labels)








Tunable Parameters


	alpha: (default: 19) the maximum number of selected features for each representative point


	gamma: (default: 0.2) impurity level tolerance, controls proportion of out-of-class samples can be in local region


	tau: (default: 2) number of passes through the training set


	sigma: (default: 1) adjusts weightings for observations based on their distance, values greater than 1 result in lower weighting


	n_beta: (default: 20) number of beta values to test, controls the relative weighting of intra-class vs. inter-class distance in the objective function


	nrrp: (default: 2000) number of iterations for randomized rounding process


	knn: (default: 1) number of nearest neighbours to compare for classification
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Introduction

Localized feature selection (LFS) is a supervised machine learning approach for embedding localized feature selection in classification. The sample space is partitioned into overlapping regions, and subsets of features are selected that are optimal for classification within each local region. As the size and membership of the feature subsets can vary across regions, LFS is able to adapt to local variation across the entire sample space.

This repository contains a python implementation of this method that is compatible with scikit-learn pipelines. For a Matlab version, refer to https://github.com/armanfn/LFS

The LFS approach was developed by Nargus Armanfard. For further information please refer to:


	
	Armanfard, JP. Reilly, and M. Komeili, “Local Feature Selection for Data Classification”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1217-1227, 2016.
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Statement of Need

LFSpy offers an implementation of the Local Feature Selection (LFS) algorithm that is compatible with scikit-learn, one of the most widely used machine learning packages today. LFS combines classification with feature selection, and distinguishes itself by its flexibility in selecting a different subset of features for different data points based on what is most discriminative in local regions of the feature space. This means LFS overcomes a well-known weakness of many classification algorithms, i.e., classification for non-stationary data where the number of features is high relative to the number of samples.







          

      

      

    

  

    
      
          
            
  
Installation

LFSpy is available on the Python Package Index (PyPI) [https://pypi.org/project/LFSpy/].

To install LFSpy along with its dependencies run the command:

pip install lfspy






Dependencies

LFS requires:


	Python 3


	NumPy>=1.14


	SciPy>=1.1


	Scikit-learn>=0.18.2


	pytest>=5.0.0










          

      

      

    

  

    
      
          
            
  
Configuration

The localized feature selection method has a set of user configurable paramaters that can be tweaked to get your desired functionality. For a full description of each parameter refer to the papers listed in the citations section. The parameters are:


	alpha: (default: 19) the maximum number of selected features for each representative point


	gamma: (default: 0.2) impurity level tolerance, controls proportion of out-of-class samples can be in local region


	tau: (default: 2) number of passes through the training set


	sigma: (default: 1) adjusts weightings for observations based on their distance, values greater than 1 result in lower weighting


	n_beta: (default: 20) number of beta values to test, controls the relative weighting of intra-class vs. inter-class distance in the objective function


	nrrp: (default: 2000) number of iterations for randomized rounding process


	knn: (default: 1) number of nearest neighbours to compare for classification








          

      

      

    

  

    
      
          
            
  
Usage

To use LFSpy on its own:

from LFSpy import LocalFeatureSelection

lfs = LocalFeatureSelection()
lfs.fit(training_data, training_labels)
predicted_labels = lfs.predict(testing_data)
total_error, class_error = lfs.score(testing_data, testing_labels)









          

      

      

    

  

    
      
          
            
  
scikit-learn Compatability

To use LFSpy as part of an sklearn pipeline:

from LFS import LocalFeatureSelection
from sklearn.pipeline import Pipeline

lfs = LocalFeatureSelection()
pipeline = Pipeline([('lfs', lfs)])
pipeline.fit(training_data, training_labels)
predicted_labels = pipeline.predict(testing_data)
total_error, class_error = pipeline.score(testing_data, testing_labels)









          

      

      

    

  

    
      
          
            
  
Testing

We recommend running the provided test after installing LFSpy to ensure the results obtained match expected outputs.

pytest may be installed either directly through pip (pip install pytest) or using the test extra (pip install LFSpy[test]).

pytest --pyargs LFSpy





This will output to console whether or not the results of LFSpy on two datasets (the sample dataset provided in this repository, and scikit-learn’s Fisher Iris dataset) are exactly as expected.

So far, LFSpy has been tested on Windows 10 with and without Conda, and on Ubuntu. In all cases, results have been exactly the expected results.





          

      

      

    

  

    
      
          
            
  
Functionality

class LocalFeatureSelection(self, alpha=19, gamma=0.2, tau=2, sigma=1, n_beta=20, nrrp=2000, knn=1, rr_seed=None)











	Parameters

	
	alpha : integer, optional, default 19

	maximum number of selected features for each representative sample



	gamma : integer, optional, default 0.2

	impurity level



	tau : integer, optional, default 2

	number of iterations



	sigma : integer, optional, default 1

	controls neighboring samples weighting



	n_beta : integer, optional, default 20

	number of distinct beta



	nrrp : integer, optional, default 2000

	number of iterations for randomized wandering process



	knn : integer, optional, default 1

	k nearest neighbours



	rr_seed : integer, optional, default None

	seed value for random wandering process








	Attributes

	
	fstar : array of shape (n_features, n_features)

	selected features for each sample



	fstar_lin : array of shape (n_features, n_features)

	fstar before applying randomized wandering process



	training_data : array of shape (n_features, n_samples

	The set of M by N features and observations the model was trained on



	training_labels : array of shape (n_samples)

	The set of N class labels the model was trained on












Methods







	fit(self, training_data, training_labels)

	


	predict(self, testing_data)

	


	classification(self, testing_data)

	


	class_sim_m(self, test, N, patterns, targets, fstar)

	





__init__(self, alpha=19, gamma=0.2, tau=2, sigma=1, n_beta=20, nrrp=2000, knn=1, rr_seed=None)





Initialize self

fit(self, training_data, training_labels)





Fit model







	Parameters

	
	training_data{array-like} of shape (n_samples, m_features)

	Training data



	training_labels{array-like} of shape (n_samples)

	Class labels for each sample








	Returns

	





predict(self, testing_data)





Predict using the model







	Parameters

	
	testing_data{array-like} of shape (n_samples, m_features)

	Testing data








	Returns

	





classification(self, testing_data)





Internal feature classification function, called by predict function







	Parameters

	
	testing_data{array-like} of shape (n_samples, m_features)

	Testing data








	Returns

	





class_sim_m(self, test, N, patterns, targets, fstar, gamma, knn)





Internal feature classification function, called by classification function







	Parameters

	
	test{array-like} of shape (n_samples, m_features)

	Testing data



	N: {integer}

	Number of features



	patterns:

	Data the model was trained on



	targets:

	Class Labels the model was trained on



	fstar:

	Selected features for each samples



	gamma:

	Impurity Level



	knn:

	K nearest neighbours








	Returns

	











          

      

      

    

  

    
      
          
            
  
Examples

Given here is an example demonstration of localized feature selection and LFSpy for feature selection and classification using the common Iris flower data set.

For installation instructions please refer to the “Installation” section.

import numpy as np
from scipy.io import loadmat
from LFSpy import LocalFeatureSelection
from sklearn.pipeline import Pipeline

# Loads the sample dataset
mat = loadmat('LFSpy/tests/matlab_Data')
x_train = mat['Train'].T
y_train = mat['TrainLables'][0]
x_test = mat['Test'].T
y_test = mat['TestLables'][0]


#Trains an tests and LFS model using default parameters on the given dataset.
print('Training and testing an LFS model with default parameters.\nThis may take a few minutes...')
lfs = LocalFeatureSelection(rr_seed=777)
pipeline = Pipeline([('classifier', lfs)])
pipeline.fit(x_train, y_train)
y_pred = pipeline.predict(x_test)
score = pipeline.score(x_test, y_test)
print('LFS test accuracy: {}'.format(score))
# On our test system, running this code prints the following: LFS test accuracy: 0.7962962962962963









          

      

      

    

  

    
      
          
            
  
Contribution Guidelines

Contributions are welcomed and can be made to the public Git repository available at: https://github.com/McMasterRS/LFSpy

We encourage anyone looking to contribute to consult the open issues available at https://github.com/McMasterRS/LFSpy/issues

We ask that in submitting changes you consult the coding standards and pull request guidelines outlined below.


Contributing to the method:

This library impliments the Localized Feature Selection method outlined by Nargus Armenford. As such, changes made the method should be only done to reflect changes made to the theoretical basis.




Submitting a Pull Request

Please submit one pull request per feature. Before submitting a pull request ensure your code continues to pass the included tests. LFSpy uses pytest and the tests are located in the tests directory of this repository.

The tests can be run using the command:

pytest --pyargs LFSpy
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